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Abstract

Studies of meaning in human and primate communication face,
in principle, similar methodological problems. In both cases,
meaning is not observable directly, but must be inferred from
more indirect sources, such as directly observable behavior.
Recent work in probabilistic cognitive modeling of language
use has therefore developed methods of inferring latent se-
mantic meaning through the lens of a probabilistic model of
language use. In this paper, we explore how to adapt such
an approach for insightful investigations of primate communi-
cation. Towards this end, we develop a suitable probabilistic
model of processes that generate communicative behavior by
making use of functionally specified latent meaning represen-
tations. As a proof of concept, we apply this model to a rich,
annotated data set of orangutan communicative dyadic interac-
tion and conclude that explicit probabilistic modeling can pro-
vide additional insights for the study of animal communication
pertaining to the context-dependent nature of signals and the
gradual evolution of human communication systems.

Keywords: primate communication; evolution of language;
pragmatics; probabilistic modeling

Introduction
Language must have evolved in the primate order, but how
and why this happened remains one of the big scientific ques-
tions of our time. A core feature of language is its flexibility,
allowing humans to effortlessly vary and switch between lex-
ical items under different social and interactional conditions.
The degree to which nonhuman species are able to adjust their
communicative signals and their responses to them according
to the immediate socio-ecological condition has critical im-
plications for the evolutionary trajectory of pragmatics, that
is, the role of context in shaping the meaning of utterances
(Scott-Phillips, 2010; Wheeler & Fischer, 2012). In this pa-
per, we want to build common ground between the study of
pragmatics in human and nonhuman communication by ex-
plicating a computational framework that specifies a basic ar-
chitecture of context-sensitive inferential communication.

Determining the meaning of signals has been a central
challenge in comparative research, complicated by the com-
mon conflation between context and function (Fröhlich et al.,
under review) but also by the discrepancy in methodologi-
cal approaches between research fields (Liebal & Oña, 2018).
Vocal communication studies often use playback experiments
to test hypotheses, and to date mainly focused on the repre-
sentation and functional reference of signals (Wheeler & Fis-
cher, 2012). In contrast, gestural communication researchers

conduct observational studies of behavior around communi-
cation events to infer intentional signal use (Liebal et al.,
2014). For a long time, gestures have been characterized as
extraordinarily flexible (Corballis, 2002), but evidence for vo-
cal flexibility in several primate taxa is now increasing (Tay-
lor et al., 2022). The rise of “multimodalism” in comparative
research on nonhuman communication systems (Fröhlich,
Sievers, et al., 2019) requires adopting an integrative defini-
tion of meaning applicable across communicative modalities.

There seems to be an insurmountable gulf between non-
human communication, where signal and function are bio-
logically fixed (Smith, 1977), and human language, which
relies on higher-order mental representations (Grice, 1957).
A bridge across this gap may be provided by communica-
tion systems in which signals are goal-directed with the sig-
naller aiming to change the behaviour of the recipient, evi-
dencing so-called “first-order intentionality” (Dennett, 1983).
In their influential study of gesture meanings in wild chim-
panzees, Hobaiter & Byrne (2014) have noted the presence
of apparently satisfactory outcomes (ASO) after which sig-
nalling stops, thus reflecting plausible social goals. These
and many other studies focusing more on audience checking,
sensitivity to visual attention, and persistence (Leavens et al.,
2005; Fröhlich, Wittig, & Pika, 2019) showed that the use of
signals in nonhuman primates can be intentional and volun-
tary. The presence of an intended outcome implies that the
link between internal state and behavioural outcome is po-
tentially uncoupled and that the signal is primarily linked to
the goal. The selected effect (“function”) becomes the in-
tended effect (“meaning”) when the signaller represents the
goal state, while the exact meaning depends on signal type
(Fröhlich et al., under review).

Recent years have seen growing evidence for context
(in)dependence in the use and interpretation of signals in non-
human communication systems, spanning multiple primate
taxa and communicative modalities. For instance, compar-
ative research on great ape gestures has shown that often
there is no one-to-one correspondence between signal and
function in primates (Liebal et al., 2014), as commonly as-
sumed for the code-based model in animal communication
(Cartmill, 2023), and that the interpretation of signals is typ-
ically ‘enriched’ using cues that are external to the signal it-
self. Hence, nonhuman primates in particular have been con-
sidered suitable models for this emerging area of research,



supporting pragmatics-first approaches of language evolution
(Scott-Phillips, 2010; Moore, 2016).

The study of pragmatics in nonhuman animals has largely
been isolated from research on this topic in human adults and
children. Even though key terms like ”meaning” or ”inten-
tion” are used with reference to foundational work in lin-
guistic pragmatics (Grice, 1957), there is little methodolog-
ical and theoretical overlap between the fields. As a first
step in this direction, Bohn et al. (2022) recently introduced a
computational framework to bridge that gap. Inspired by one
of the most influential and productive frameworks in linguis-
tic pragmatics – the Rational Speech Act (RSA) framework
(Frank & Goodman, 2012; Franke & Jäger, 2016; Scontras et
al., 2021) – they suggested that communicative interactions
between chimpanzees could be understood as a social infer-
ence process in which receivers (listeners) rationally integrate
multiple information sources (gestures, facial expressions,
social context). Yet, despite being conceptually interesting,
the work of Bohn et al. (2022) remains superficial: while fo-
cusing on the high-level integration of different (multi-modal)
information sources, they fail to specify the processes under-
lying each source. For example, the way in which a signal re-
lates to, e.g., a sender’s intention is not spelled out and instead
simply represented by a stipulated number denoting associa-
tive strength. To be productive, this approach needs further
explication.

Our goal in this paper is to close the conceptual and
methodological gap dividing the study of human and non-
human pragmatics. As a first step, we present a computa-
tional model that assigns a functional role to latent signal
meanings in the communication process. To overcome the
technical limitations of previous modeling work by Bohn et
al. (2022), where meaning associations were stipulated and
fixed, we draw on related work from linguistics in which
probabilistic models of production and interpretation behav-
ior are formally specified and Bayesian inference is used to
model dyadic learning or adaptation between interlocutors
(Schuster & Degen, 2020; Hawkins et al., 2023) or to estimate
plausible semantic values from the observed data (Schöller &
Franke, 2017; van Tiel et al., 2021). Next, we use this model
to analyze a large data set of orangutan (Pongo abelii, P. pyg-
maeus) gestural communication, first published in Fröhlich
et al. (2021). Finally, we will use this method to take a first
step towards investigating contextual flexibility by comparing
signal meanings in different communicative settings (wild vs.
captive, mother-offspring dyads vs. others).

Probabilistic models for great-ape signaling
Our goal is to uncover likely signal-meaning associations that
would explain the observed dyadic behavior in the data set
of orangutan gestural communication. The problem is that,
while behavior is directly observed, signal-meaning associa-
tions are not; rather, they have to be inferred from the data.
This becomes possible if we identify a functional role for
signal-meaning mappings in a model of the process that (is

assumed to have) generated the data. Based on such a model,
we can use Bayesian inference to obtain information of latent
semantic meanings of signals in great-ape interaction.

To do so, we start with a model of dyadic interactions as a
signaling game (Lewis, 1969; Skyrms, 2010). We then de-
fine stochastic choice policies for senders and receivers in
these signaling games, that are parameterized on a (numer-
ically represented) association strength between signals and
meanings, which we will refer to as a lexicon (matrix) L. We
then use the data from all dyads, sender and receiver together,
to infer values of association strength L that are likely to have
generated the observed data.

The stage game. A signaling game has two players, a
sender S and a receiver R. It consists of a set T of states
(mnemonic for types of the speaker), a set M of messages or
signals, and a set A of response actions. In one round of the
game, the sender knows the actual world state (drawn from a
prior distribution PT ∈ ∆(T ) over states. The sender selects
a message m ∈ M conditional on the observed state t ∈ T ,
by sampling from the sender’s policy PS(· | t) ∈ ∆(M)). The
receiver does not know the state, but observes the sender’s
choice of message, and so responds by selecting an action
from the receiver’s policy PR(· | m) ∈ ∆(A). For each round
of play, given by a triple ⟨t,m,a⟩, both sender and receiver
obtain a numerical utility US,R(t,m,a) ∈ R.

For our analyses, we instantiate a signaling game as fol-
lows and call it the stage game. The set of states T consists
of seven need states, which correspond to the seven ASOs
identified in the data set. The set of signals M contains 42
different signals, as annotated in the data set. The set of re-
ceiver actions A consists of the seven types of actions which
correspond directly to the need states T (thus leading to an
‘ASO‘ classification in the data set), conjoined with all the
other types of response actions distinguished during the anno-
tation process (i.e., ’none’, ’other - agonistic’, ’other - move
away’, ’responds w/ signal’, ’tolerates’, ’visual attention’).

Solution concepts & estimated functional policies. Stan-
dard applications of signaling games examine equilibria, evo-
lutionary stable states or other kinds of game-theoretic so-
lution concepts (e.g. Cho & Kreps, 1987; Wärneryd, 1993).
This approach is entirely behavioral and simply looks at
which policies satisfy the criteria of the solution concept.
In contrast, we are here interested in how agents could in-
ternally process information and implement a given policy,
thus taking a more cognitive approach to specifying behav-
ior (Brochhagen et al., 2018). Concretely, we will spell out a
minimal lexical-association model, which assumes that the
choice policies for sender and receiver are conditioned on
a latent, shared lexicon L, which is estimated from the ob-
served data. In other words, rather than taking the fixed sig-
naling game (without empirical data) and asking which poli-
cies best “solve” the game, we here use available empirical
data to estimate which policies best explain the data, based on



a functional parameterization that is theoretically insightful
about possible cognitive processes (here: meaninglike asso-
ciations between states and signals) that could have generated
the data. For comparison, we also fit a behavioral baseline
model, which remains agnostic about the information pro-
cesses that may feed into signaling behavior and serves as a
baseline model guaranteed to give optimal fit to the data.

Behavioral baseline model. Our data consists of a series
of observed plays of the stage game, i.e., triples of state, mes-
sage, and action. For any given sender policy PS and receiver
policy PR, the likelihood of observing such a triple ⟨t,m,a⟩ is:

LH(⟨t,m,a⟩ ,PS,PR) = PS(m | t)×PR(a | m) .

The likelihood of the whole data set D, given a pair of poli-
cies, is therefore:

LH(D,PS,PR) = ∏
⟨t,m,a⟩∈D

PS(m | t)×PR(a | m) .

Using Bayes’ rule, we can, in principle, infer a posteriori
credible policies:

P(PS,PR | D) ∝ P(PS,PR)×LH(D,PS,PR) .

The behavioral baseline model does this by sampling poli-
cies from a sequence of unbiased Dirichlet distributions. Es-
sentially, this model just fits, in parallel, unbiased rates for
multinomial distributions for each state (sender) and message
(receiver). Being unbiased in the prior, the means of pos-
terior rate parameters approximate the corresponding maxi-
mum likelihood values. The model has a total of 7× 41+
42× 12 = 791 free parameters, and is maximally powerful
to capture all global patterns in the data (without group dis-
tinctions, see below). For comparison, we can think of this
model as two conjoined multinomial regression models, one
that predicts message choice given state, and another that pre-
dicts action choice given message. Using Stan (Carpenter et
al., 2016, in press), we obtain samples for the posterior dis-
tribution over multinomial rates. The mean log-likelihood for
posterior samples from the policies is −45,298 (95% credible
interval [−45,340;−45,258]).1

Lexical-association model. The lexical-association model
(LAM) uses the same likelihood function, but defines poli-
cies as parameterized functions of conceptually meaningful
parameters, taking inspiration from probabilsitic models of
pragmatic utterance choice and interpretation for human lan-
guage (e.g., Frank & Goodman, 2012). While human com-
municators do plausibly engage, at least sometimes, in some

1All model fits were obtained by Hamiltonian Monte Carlo in
four chains, an initial warm-up period of 3000 samples, and record-
ing 4000 samples for each chain. Quality of samples were checked
visually, by R̂ statistic, and for efficient sample size. — Model code
will be made available with a de-anonymized version of this work.

form of audience-design or strategic Theory-of-Mind reason-
ing, our starting assumption for models of great-ape signal-
ing is that senders and receivers are not reasoning about each
other; they are rather modelled as what the pragmatics litera-
ture refers to as literal agents.2

The main assumption of the lexical-association model is
that sender and receiver policies are conditioned on a matrix
L (mnemonic for lexicon) of size |T | × |M |, such that each
entry Li j ∈ [0;1] represents how strongly state ti is associ-
ated with signal m j. Crucially, the model assumes that the
same state-message associations underlie the sender and the
receiver behavior. In this way, this model goes beyond what
is normally achievable, e.g., by standard regression modeling.
It incorporates, and therefore allows to test, the assumption
that great-ape signaling is governed by, what we may call, a
shared semantic lexicon, that explains both production and
reception at the same time. Reversely, the model pools infor-
mation from both production and reception for inference, for
an arguably stronger basis for inference of the meanings of
signals than could be achieved by statistical results that rely
on only one side of the communication channel.

Concretely, the literal sender policy is defined as:

PS(m j | ti) ∝ Li j .

So, the literal sender selects a message proportionally to its
association strength for the given state.

The literal receiver policy is more complex. Since lexical
associations are defined between states and messages, but the
receiver maps messages to actions, the policy must bring to
bear information from lexical association onto their choice
of action. Using ideas from decision and game theory, we
assume that this mapping may happen by choosing actions
based on their expected utility. Therefore, we also require a
utility matrix U of size |T | × |M |, such that Uik ∈ R is the
receiver’s utility associated with action ak when performed in
state ti. The literal receiver’s policy is then given by:

PR(ak | m j) = Soft-Maxα(EU(ak,m j))

EU(ak,m j) = ∑
ti∈T

PR(ti | m j)Uik

PR(ti | m j) ∝ PT (ti)Li j

In words, the policy is defined as a soft-max choice, with ad-
ditional free model parameter α, based on the expected util-
ities (Franke & Degen, 2023). The latter are computed, in
the normal way, by combining information about lexical as-
sociations with a prior distribution over states (which we here
assume to be fixed, determined as the relative frequency of
need states in the data set).

2If the methodology we explore here shows to be useful enough,
future work should also consider more sophisticated agent models
and let the data decide which one is most adequate for great-ape
communication.
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Figure 1: Visual comparison of data and posterior predictions by the LAM for sender and receiver. Each plot visualizes two
matrices. Each cell shows the observed proportion of choices in the data (left), and the mean of the posterior prediction of
the LAM (right). For the sender, each column is a state, so the colors in each column represent a probability distribution over
messages. For the receiver, each row is a message, so the colors in each row represent a probability distribution over actions.

To fit this, we assume the following priors:

Li j ∼ Beta(0.5,7)
Uik ∼ Normal(0,0.2)

α ∼ log−N (2,0.05)

These priors are chosen so as to be regularizing (in principle
infinitely many pairs of U and α map onto the same receiver
policy), and also to implement a structural initial bias towards
small lexical association. Intuitively, as a default we expect
no association, and would require empirical data to convince
us that one exists.

The resulting model has less than half the number of free
parameters of the previous baseline model, namely 7× 42+
7×13+1 = 386, which drives home the important point that
the lexical-association model attempts data compression with
conceptually interpretable structure: by attempting to explain
production and reception with a shared association structure,
we can obtain more information about the interactive nature
of communication than we would based on superficial data-
fitting of each side separately. Naturally, compression comes
with a nominal loss in mean posterior likelihood of the data
−45,456 ([−45,488;−45,422]). Indeed, the predictive per-
formance of the baseline model is significantly better under
leave-one-out model comparison (Vehtari et al., 2017): dif-

ference in expected log-probability 136.6 (SE 25.8). But no-
tice that the LAM is able to generalize accross entire states
and messages, i.e., make predictions for a held-out state when
trained on all other data, while the baseline model cannot.

Figure 1 shows the observed frequencies of behavior in the
data set (left part in each colored cell) and the LAM’s mean
posterior prediction (right part). For the most part, the LAM
captures the regularities in the data reasonably well (left and
right coloring in many cells are the very similar). Notice that
the visually striking outlier for the receiver data for signal
”slap ground” is based on only three data observations for
this signal in the entire data set. We conclude that, at least
impressionistically, a model assuming a shared meaning rep-
resentation that feeds sender and receiver policies alike is able
to reproduce coarse-grained patterns in the data.

Investigating lexical associations
A computational model that allows inference of something
akin to functional ”meaning representations” may help ad-
dress a number of theoretically interesting research questions
more directly and more clearly than other methods of data
analysis. To explore these possibilities, we extend the LAM
to allow for group comparisons, focussing here on two dis-
tinctions: (i) between mother-offspring and all other types of
dyads, and (ii) between individuals in the wild and in captiv-
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(b) ’Wild’ (left) vs. ’captive’ (right)

Figure 2: Mean posterior of lexical association (log-values for better visibility) in two-group comparisons. For each state i (x-
axis) and message j (y-axis) pair, each cell shows the mean of the posterior distribution of the corresponding lexical association
parameter Li j, which is logged for better visual comparison of small values. The value of one group is shown on the left in each
cell, the other on the right. Black dots indicate noteworthy differences between groups for any given state-message pair.

ity. For each group comparison, the LAM fits two separate
lexicon matrices, one for each group (sampled independently
from the same prior). Predictions for the data from each
group are computed based on the lexicon for that group. The
other model parameters (soft-max parameter α and the utili-
ties) are shared between groups. We use priors over states that
are calculated independently from the data from each group.

Figure 2 shows mean inferred values of lexical association,
comparing different groups, and indicating noteworthy differ-
ences in lexical association. For better visibility, logarithmic
values are shown. We flag a difference between inferred lex-
ical associations as noteworthy if the posterior probability of
that difference is bigger than 0.95 or smaller than 0.05, and
the absolute value of the difference is bigger than 0.01. Note
that a nominally large difference between the (logarithms of
the) means of association values do not necessarily imply
credible differences, or vice versa.

There appears to be substantial overlap in the inferred lex-
ical associations between different groups, but also notewor-
thy and insightful differences. To interpret this, we need to
take the functional role of lexical association values into ac-
count. A lexical value Li j for state i and message j plays a
double role, informing both the sender and the receiver pol-
icy. So, when interpreting inferred lexical association in Fig-
ure 2, vertical comparison (in each column) informs us about

the impact on the sender’s policy. Horizontal comparisons are
informative about the implied receiver policy, but must be in-
terpreted with caution, because the receiver policy also takes
state priors and utilities into account.

With this in mind, when contrasting mother-offspring with
other dyads, we see that lexica differ vertically for states play
and grooming. For grooming, mother-offspring dyads appear
to have more pronounced lexical associations for some mes-
sages, in that there appear to be larger differences in vertical
comparison. That is, in mother-infant dyads, senders prefer to
use a smaller set of signals when communicating about this
state compared to senders in other dyads. A similar pattern
can be seen for play. This may reflect, in holistic ways (tak-
ing sender and receiver side into account), the intricacies of
mother-infant interactions in that playing and grooming are
often part of regular care-giving routines. As a consequence,
receivers —taking this contextual information into account—
will more readily associate play or grooming with every mes-
sage and so it requires a more specific (horizontal) association
of messages to successfully communicate about these states
when intended. In sum, inferred latent ”meaning representa-
tions” may be informative about context-specific signal use,
due to their holistic functional role in explaining sender and
receiver behavior.

Communication for the initiation of joint travel, on the



other hand, is hardly observed beyond mother-offspring pairs.
Consequently, inferred lexical association for the state joint
travel are largely uninformative for the other group. This
also explains why there are so few state-message pairs for
which we see noteworthy differences between the two groups
for that state: with few data points to draw information from,
inferences for the other group are vague, thus showing little
noteworthy differences. However, the three pairs that do dif-
fer between groups may reveal an interesting pattern: phys-
ical messages like ”grab/hold” and ”pull” have a higher lex-
ical association to this state in mother-offspring pairs com-
pared to others, while the opposite is evident for the non-
contact message ”look back”. Once again, this can be seen
as a consequence of how communication is embedded in so-
cial interaction. Mother-offspring dyads spend more time in
close proximity, making tactile gestures more efficient means
of communication.

When comparing the lexica inferred for wild vs. captive
populations, we see the most differences for joint travel, play
and stop action. In all three cases, we see more dispersed lex-
ical associations, with more messages being associated with
states for animals in captivity. One interpretation, following
the reasoning above, would be that these states are relevant in
a broader set of contexts in the wild, requiring more specific
lexical associations for signals to successfully communicate
about these states. In captivity, on the other hand, joint travel,
play and stop action may appear in more specific contexts that
already constrain the interpretation of any signal being used,
leading to a broader range of signals being associated with a
particular state.

Yet, these interpretations remain speculative until we move
beyond the signals being used and also include information
about the context in the model. Nevertheless, we think the
comparison of the different lexica highlights the potential of
the modelling approach outlined here and foreshadows in-
sights into how relational and contextual aspects of commu-
nicative interactions shape the corresponding means.

Discussion
Our goal in this paper was to connect the study of human and
nonhuman pragmatics. We introduced a basic computational
model that formalizes the process of great ape communica-
tion as signalling game based on a shared semantic lexicon.
The focal LAM model is able to capture naturalistic commu-
nicative interactions between orangutans. We see this as an
important starting point to deploy the modelling tool box de-
veloped by computational linguists in recent years to study
great ape communication and theorize about potential evo-
lutionary trajectories connecting it with human communica-
tion. We illustrated the productive nature of this approach
by estimating and comparing lexica for different groups of
orangutans (mother-offspring vs. other dyads, wild vs. cap-
tive). The results of this comparison provide at least sugges-
tive evidence that relational and contextual factors shape the
lexicon used for communication.

The present study contributes to the ongoing discussion
concerning the origins of great ape gestures and their mean-
ing. For example, Graham et al. (2018) posit that bonobo and
chimpanzee gestures overlap in meaning due to a shared phy-
logenetic origin. Our model introduces a quantitative frame-
work for evaluating such claims. Specifically, it enables a di-
rect quantification and comparison of the similarity in signal
meanings between multiple species by leveraging data from
both signalers and receivers.

A critical extension of the model will be the inclusion of
additional information sources. Bohn et al. (2022) argued that
gestures are only one part of a communicative interaction and
in order to understand (and predict) the outcome of the inter-
action one needs to consider other signals like vocalizations
or facial expressions but – crucially – also the social and re-
lational context. In linguistics and psychology, the latter is
often referred to as the common ground shared between in-
terlocutors (Clark, 1996). Previous experimental work found
that great apes modify their gestural communication based
on shared interactions with humans (Bohn et al., 2016). In
the present study, the differences in signal meanings be-
tween mother-offspring and other dyads could be seen as fur-
ther suggestive evidence that the social-interactional history
between individuals directly affects how signals are being
used by orangutans. For examples, mother-offspring dyads
concentrated on relatively fewer messages when grooming
in comparison to other dyads. One way to interpret this
would be that grooming in mother-offspring pairs is less pre-
dictable because it happens in a broader range of contexts,
in which it is more difficult to infer that an individual wants
to (be) groom(ed), requiring more specific signals. Crucially,
the framework we introduce here could be extended to di-
rectly model and quantify the importance of these informa-
tion sources.

Our study has clear limitations. For example, our mod-
els were based on data from both Bornean and Sumatran
orangutans, which were pooled for the present study. Since
Sumatran orangutans are more gregarious and socially tol-
erant than their Bornean counterparts (Weingrill et al., 2011),
future work should investigate whether this species difference
is reflected in the inferred lexica.

Taken together, we believe that the novel computational
approach introduced in this paper is a starting point for a
more comprehensive approach to study primate communica-
tion. By making concrete and transparent assumptions about
potential processes behind great-ape gestural communication,
the implications of the assumptions can be explored compu-
tationally, thereby allowing to address empirically also re-
cently popular philosophical ideas on gradual evolution tra-
jectories from nonhuman to human communication systems
(e.g. Moore, 2018; Armstrong, to appear). Furthermore, it
explicitly connects to contemporary models of human com-
munication, allowing for formal theorizing and hypothesis
testing concerning aspects of communication that may appear
uniquely human.
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